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Abstract—In this paper, we introduce a novel block-based
multiscale error concealment method using low-rank completion.
The proposed method searches for similar blocks and utilizes
low-rank completion to recover the missing pixels. In order to
make the full use of the hidden redundant information of images,
we seek for more similar blocks by building an image pyramid.
The blocks collected from the pyramid are more similar to each
other, which leads to a more accurate recovery. Moreover, instead
of recovering the missing block at once, we propose a ringlike
iterative process to partially minimize the number of unknown
pixels and further enhance the recovery result. Experimental
results demonstrate the effectiveness of the proposed method.

I. INTRODUCTION

With the rapid development of social network and mul-
timedia technology, a huge number of digital image and
video resources are being transmitted on the Internet everyday.
However, practical communication channels are not error free.
There are many loss mechanisms that may cause the data
corruption, including network congestion, all kinds of noises,
signal fades, etc. Moreover, since the transmitted signals are
always highly compressed, the loss of one single bit is likely to
bring about the loss of a whole block, which seriously affects
the visual quality of the decoded images/videos. The error
concealment method takes advantages of the correlation within
images and tends to recover the loss parts of the corrupted
images. A good error concealment method should be able to
hide the fact that the image is corrupted and make the image
comfortable and natural to be looked at.

The most classic way is to estimate the missing pixels in
the Bayesian framework [1][2]. Given the corrupted image,
they maximized the conditional probability of the missing
pixels based on the available pixels and the other pixel
estimates. Besag [1] employed the Bayes’ rule on the posterior
probability to yield an optimization with the prior probability
and the likelihood. However, the prior probability model may
not be available or accurate enough for images. Li and Orchard
[2] locally modeled the image as a stationary Gaussian process
and reduced the statistical modeling complexity. Nevertheless,
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natural images may be not stationary on local areas, especially
around edge structures.

Edge-directional based error concealment methods are also
being developed in recent years [3][4]. These methods esti-
mated strong edges based on the neighboring frames and the
received area of the current frame, then recovered the lost
regions along these estimated edges. After that, they estimated
the remaining parts of the lost regions. These methods present
rather good visual quality since the human visual system is
really sensitive to edge structures. Yet, they needed extra
information such as neighboring frames to estimate the key
edges. If the input is a single corrupted image, it is rather
hard to estimate the edge.

Another effective method is the signal extrapolation [5]. The
signal extrapolation is performed by extending a signal from
a limited number of known samples into areas beyond these
samples. Thus, it is rather suitable for error concealment. The
method iteratively generates a model of the signal based on
a set of basis functions (e.g., Fourier-transform), in order to
approximate the available parts of the signal. As the model is
defined on the whole signal, the missing parts can be recovered
by the model. The method presents very good results for edges,
smooth areas, as well as structured areas. However, since there
is only one basis function added to the model in every iteration
step, many iterations are needed for generating the model.

In order to seek for more correlations within images,
multiscale error concealment approaches are proposed [4][6].
The advantage of such approaches is quite evident since
the recovery at the lower level is a relatively simple task.
The upper levels can make use of the recovered low level
image. In these methods, they both used the discrete cosine
transform (DCT) pyramid. One image block in the upper level
only utilized its corresponding low level block. Nevertheless,
there may be several blocks providing similar information.
Bounding the block in the upper level with only one block
in each lower level is inappropriate since it neglects the
redundant information between similar blocks.

In this paper, we propose a novel block-based multiscale
error concealment method using low-rank completion aiming
at isolated block loss situations. The input loss image is
first down-sampled into lower levels. Then, for each block
containing one pixel width loss, its similar blocks can be
collected in all levels. After that, the similar blocks are
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clustered into a matrix, whose rank should be low. Finally,
the matrix is processed by the low-rank completion and
the missing pixels can be recovered. For each iteration, the
boundaries of missing blocks are recovered. Progressively, the
whole missing block can be recovered from boundaries to the
center. Experimental results show that our method presents
better details and the recovered images seem more comfortable
and natural compared with other classic and state-of-the-art
error concealment methods.

The rest of the paper is organized as follows: Section II
formulates the error concealment problem and gives a brief
overview of the proposed method. The image pyramid and the
ringlike iterative process are presented in Section III in details.
Experimental results and analysis of the proposed method
compared with other error concealment methods are presented
in Section IV. Finally, Section V concludes this paper.

II. PROBLEM FORMULATION

According to the availability of the neighboring blocks,
block-loss situations can be classified into two types [2]: the
isolated block loss and the consecutive block loss. In this
paper, we mainly focus on the former situation.

The image block that contains one or more missing pixels
is regarded as the reference block. For a

√
n×

√
n reference

block bl at location l, a set of its similar blocks is defined as
follows,

Il = {l | ∥bl − bl′∥2 ≤ T, l′ ∈ Ωn(l)}, (1)

where Il is the indices of the similar blocks. The threshold
T controls the similarity between the block bl′ and bl. Ωn(l)
defines the neighborhood of location l. When computing the
similarity between two blocks, only the available pixels are
included in order to prevent the similarity from being damaged
by the missing pixels. Assuming that m similar blocks are
found, we can use them to define a matrix M , which is

M = (bIl(1), bIl(2), ..., bIl(k), ...,bIl(m)), k = 1, ...,m, (2)

where bIl(k) is an n× 1 vector containing all the columns of
the image block bIl(k). As described above, matrix M should
have a low-rank structure. Given the incomplete matrix M ∈
Rn×m, the low-rank completion problem can be formulated
as follows,

min
X

rank(X),

s.t. Xij = Mij , (i, j) ∈ Ωa,
(3)

where X ∈ Rn×m and Ωa is the set of locations corresponding
to the available pixels.

Unfortunately, the above rank minimization problem is NP-
hard and cannot be solved efficiently so far. Recently, the nu-
clear norm is utilized to solve the rank minimization problem
since it is proved to be the tightest convex lower bound of
the rank function of matrices. Thus, the rank minimization
problem (3) can be solved by approximating rank function
using the nuclear norm:

min
X

∥X∥∗,

s.t. Xij = Mij , (i, j) ∈ Ωa,
(4)
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Fig. 1. The proposed image pyramid. The red block represents the reference
block. The blue blocks in dash lines represent the searching neighborhood.
The yellow blocks in dash lines represent the similar blocks. Level 0 is the
original scale of the image.

where ∥X∥∗ =
∑min(m,n)

i=1 σi(X) is the nuclear norm and
σi(X) is the ith largest singular value of X . In this paper, the
truncated nuclear norm [7] is applied because of its efficiency.

III. THE MULTISCALE ERROR CONCEALMENT METHOD

A. The Image Pyramid

In this section, the proposed image pyramid is presented. In
practice, we find that the toughest issues of similar blocks is
that they are not that similar. In fact, the top-ranking similar
blocks are indeed reliable while the bottom-ranking blocks
are not. As illustrated in Fig. 2(c), the most unlike block
in the similar block set found in the original level may be
significantly different from the reference block. To address
this problem, we need a wider searching neighborhood for the
reference block, while not introducing extra prior knowledge.
Thus, we come up with the image pyramid.

As in Fig. 1, the input corrupted image is down-sampled to
several levels. The nearest neighbor interpolation is adopted
for down-sampling, since other interpolation methods may
pollute the available pixels with missing pixels. For simplicity,
the corrupted image in each level (except for the Level 0)
is recovered based on its own information. The searching
neighborhood of the reference block remains the same in each
level, which introduces more information at the lower levels.
The image pyramid helps to find more similar blocks. As
shown in Fig. 2(d), the most unlike block in the similar block
set collected from all the levels is much more similar to the
reference block.

(a) (b) (c) (d)

Fig. 2. (a) The original block; (b) The reference block; (c) The most unlike
block in the similar block set found in the original level; (d) The most unlike
block in the similar block set collected from all the levels.



(a) The first iteration. (b) The second iteration.

Fig. 3. Examples of reference blocks of the first iteration (blocks in green
dash lines) and the second iteration (blocks in blue dash lines). The white dots
represent the available pixels. The black dots represent the missing pixels. The
gray dots are the recovered pixels after the first iteration, which are used as
available pixels in the following iterations.

Unlike the DCT pyramid proposed in [4], [6], the multiscale
information is utilized more efficiently in the proposed image
pyramid. The reference block is not bounded to a single block
in the lower level. On the contrary, the similar blocks can be
found in every level. There can be several similar blocks in
each level. If none of the image blocks in a image level match
with the reference block, there will be no similar blocks in
that level.

B. The Ringlike Iterative Process

The ringlike iterative process specific to the isolated block
loss situation is presented in this section. Apparently, the
center pixels of the missing block is harder to be recovered
than the pixels on the boundaries. The reason is that the
missing pixels on the boundaries of the missing blocks have
much more available neighbors. Thus, the recovery should be
more reliable if the pixels on the boundaries are recovered
first.

The basic idea of the ringlike iterative process is to recover
the boundaries of the missing block on each iteration. In that
case, the recovered pixels can be regarded as available pixels
on the next iteration. The progressive process can make the
recovery of the center pixels more natural. Fig. 3 gives some
examples of the reference blocks. All reference blocks contains
only one pixel width loss. After processing all the reference
blocks, the pixels on the boundaries of the missing block can
be obtained by averaging the recovered part of all the reference
blocks. As can be observed in Fig. 3(b), the recovered pixels
are used as available pixels for the next iteration.

Since the boundaries of the missing block is obtained after
all the reference blocks are processed, the processing order of
the reference blocks does not affect the result. The averaging
may alleviate some of the artifacts, but the recovered pixels are
not utilized until the current iteration is finished. In order to
utilize the recovered pixels at once, three kinds of processing
schemes are proposed (Fig. 4):

1) Raster scanning (Fig. 4(a)): This scheme processes the
input image by a raster scanning order. There is only

one pixel missing in the reference block. The missing
pixel in every reference block has the same location. The
missing pixel recovered by last reference block is used
as an available pixel in the next reference block. This
sequential scheme is somewhat similar to that of [2]. Yet
the proposed scheme uses an image block perform the
raster scanning and preserves the correlation between
the missing pixel and the available pixels. However, this
scheme also need a linear merge strategy to alleviate the
error propagated by the sequential recovery.

2) Bilateral-direction (Fig. 4(b)): The bilateral-direction
scheme intends to solve the error propagation prob-
lem by performing the scanning from both directions.
The scheme simultaneously processes the upper (lower)
boundary of the missing block from left to right and
from right to left. The left (right) boundary is processed
simultaneously from top to down and from down to top.
Such measurement can properly deal with the situation
that the missing block sits on the boundary of two
different areas.

3) Double-block (Fig. 4(c)): For every missing pixel, two
reference blocks are used for recovery in this scheme.
The two reference blocks contains different neighbor-
hood for the missing pixels on different directions. The
comprehensive information avoids the negative influence
of the one-sided neighborhood and helps to recover
the missing pixel more precisely. Compared with the
bilateral-direction scheme, the double-block scheme can
handle more complicated situations.

(a) Raster scanning (b) Bilateral-direction

(c) Double-block

Fig. 4. Three kinds of processing schemes. The white dots represent the
available pixels. The black dots represent the missing pixels.

Although these schemes may produce relatively precise
result, they have a major drawback - the pixel they recovered
are not natural. This is because these schemes recover pixels
one by one and do not consider the correlation between
missing pixels. The proposed averaging scheme, by contrast,
produces less artifacts and more natural results. Thus, the
averaging scheme is applied in our experiments.

IV. EXPERIMENTAL EXPERIMENTS

The recovery results of the proposed block-based multiscale
error concealment method (BMEC) are evaluated by conceal-



TABLE I
PSNR AND SSIM RESULTS OF DIFFERENT METHODS.

THE LARGEST VALUES ARE MARKED IN BOLD.

Images NSEC FSE LRTC BMEC

House PSNR 17.61 21.55 17.12 22.57
SSIM 0.9669 0.9834 0.9530 0.9841

Lena PNSR 21.51 26.37 19.95 26.15
SSIM 0.9729 0.9855 0.9480 0.9864

Barbara PNSR 19.34 26.12 19.19 26.16
SSIM 0.9616 0.9890 0.9472 0.9890

Pepper PNSR 21.25 26.92 19.78 27.65
SSIM 0.9731 0.9865 0.9458 0.9893

ing missing blocks in natural images. The proposed method
is implemented on MATLAB 7.10 platform. The isolated
blocks of size 16 × 16 pixels are cut out of the test images
House, Lena, Barbara and Pepper. The size of the reference
block is set to be 16 × 16. In our experiment, the image
pyramid has 11 levels, including the original level. The image
size of the bottom level is half of the original image. The
proposed method is compared with the Novel Sequential Error
Concealment method (NSEC) proposed by Li and Orchard
[2], the Frequency Selective Extrapolation (FSE) proposed by
Seiler and Kaup [5] and the Low-Rank Tensor Completion
(LRTC) proposed by Liu et al. [8].

The quality of the recovered images are compared via
two aspects: the objective quality and the subjective visual
quality. The objective quality is evaluated by the Peak Signal-
to-Noise Ratio (PSNR) and the structural similarity (SSIM)
index. Since the recovered image and the original image
are different only in the missing blocks, PSNR is computed
only in these areas. As mentioned before, error concealment
methods aim at recovering natural and comfortable images.
In this respect, SSIM is a better objective evaluation criterion.
Compared to PSNR, SSIM index is more consistent relative to
visual perception. The PSNR and SSIM results of the proposed
method and other methods are shown in Table I.

As shown in Table I, the PSNR results of the proposed
BMEC method is much better than NSEC and LRTC, and
comparable to FSE. In respect to SSIM, the proposed BMEC
presents the best results, which means that the visual quality is
rather good. Such consequence can be easily observed in the
comparison of the subjective quality. As illustrated in Fig. 5,
there are distinct boundaries on the recovered blocks produced
by NSEC and LRTC. FSE presents rather impressive recovery,
yet there are still some ghosting in the results. The proposed
method presents the most natural recovery results without
generating any boundaries and ghosting artifacts.

V. CONCLUSION

In this paper, we propose a novel block-based multiscale
error concealment method using low-rank completion. In the
proposed method, an image pyramid is built so that more
similar blocks can be found. The blocks collected from the
pyramid are more similar to the reference blocks, which
leads to a more accurate recovery. Once we obtain enough
similar blocks, the low-rank completion method is employed
to recover the missing pixels. Moreover, we propose a ringlike
iterative process to minimize the number of unknown pixels

Fig. 5. The subjective image quality comparison of different methods. From
left to right: the input image, NSEC, LRTC, FSE, BMEC and the original
image. The first and the second rows are the recovery of the test image House
and Lena, respectively. The rest of the rows are the enlargement results of
parts of the recovered images.

step by step, which can further enhance the recovery result.
Experimental results demonstrate the effectiveness of the pro-
posed method. In the future work, we are planning to apply
the proposed method on recovering random samples and other
situations.
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